
   

Abstract-- The design of a controlling structure with internal 
models for digitally controlled electrical drives is given. In the 
control portion of the structure, the nominal model of the 
plant and model of immeasurable external disturbances are 
included to improve the system robustness and to extract the 
expected class of disturbances. Particular attention is paid to 
the design of IMPACT (Internal Model Principle and Control 
Together) structure for digitally controlled drives and a suita-
ble modification of the structure is proposed in order to 
improve the system performance and to facilitate system 
synthesis. 
 
Index Terms-- Principle of absorption, Immeasurable external 
disturbance, IMPACT structure, Controlled electrical drives, 
Newton's predictor. 

I. INTRODUCTION 
 In many applications of controlled electrical drives the 
high dynamical performance and capability of the system to 
reject the influence of external disturbances on the steady-
state value of the controlled variable are required. In the 
tracking regime, the tracking error is to be reduced to the 
level of sensor resolution, in the presence of the generalized 
disturbance that comprises the external disturbance and 
uncertainties of plant parameters. These requirements can 
be achieved by the design of IMPACT controlling structure 
[1-4] suited for the design of speed- and position-controlled 
electrical drives.  
 The IMPACT structure has the merits of both the 
structures based upon the IMP (Internal Model Principle) 
and IMC (Internal Model Control) [1,5]. As it is known, 
IMP means the inclusion of disturbance model into the 
controlling structure in order to compensate effects of 
expected class of external disturbances on the system output 
or the system controlled variable (angular speed or position 
of the motor shaft). The IMC structure is not suitable for 
disturbance rejection but it enables the achievement of the 
robust system stability and high dynamic performance. 
 In this paper, the conventional IMPACT structure is 
described and then its modification is proposed for 
application to the structural design of digitally controlled 
electrical drives. It will be shown that the application of 
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predictive filters instead of disturbance observer, including 
the model of disturbance, gives the same or even better 
system performance. Unlike the structure with disturbance 
observer, the alternative control structure, proposed in this 
paper, is simpler and with a smaller number of tuning 
parameters within the internal models by which the 
robustness, filtering properties, and high dynamic 
performance of the system can be easily adjusted.  

II. PRINCIPLE OF ABSORPTION 
Suppose that kth sample of an external disturbance 

w t( )  may be determined by a finite number m0 of previous 
samples. Then, the disturbance is regular and may be 
described by extrapolation equation [4]   

w kT D w k Tw( ) ( ) (( ) )= −−z 1 1                        (1)                                                         

where Dw ( )z−1   is the prediction polynomial of order mo -1. 
Relation (1) is called the equation of extrapolation or 
prediction [4] and it may be rewritten as 

( ( )) ( )1 01 1 1− =− − −z D z w zw
                      (2)  

where w z( )−1  denotes the z-transform of disturbance. 
Relation (2) is called compensation equation and FIR filter 
having the pulse transfer function ( ( ))1 1 1− − −z D zw

 is the 

absorption filter or the compensation polynomial [4]. 

Absorption filter Φw wz z D z( ) = ( )− − −−1 1 11  is designed 
for a known class of disturbances and its impulse response 
becomes identically equal to zero after n sampling instants, 
where n ≥ mo. Hence, the compensation equation (2) may 
be considered as the absorption condition of a given class of 
disturbances. The condition can be expressed as  

Φ Φw wz w z t kT T( ) ( ) , (deg )− − = = ≥1 1 0 za         (3)                                                 

The extrapolation polynomial D zw ( )−1  is 
determined by an apriori information about disturbance 
w t( )  [4, 6], nevertheless, it is simply resolved as 
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In the case of a stochastic disturbance s(t), absorption filter 
(4) should suppress as much as possible effects of 
disturbance on the system output. Thus, for a low frequency 
disturbance s(t),  which can be generated by double 
integration of the white noise, an appropriate choice of 
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absorption filter is Φs z z( ) ( )− −= −1 1 21  that corresponds to 
absorption of linear (ramp) disturbance [1, 7]. In majority 
of practical applications an appropriate choice might be 
D z z( )− −= −1 12 . According to (4), prediction 

polynomial D z z( )− −= −1 12  rejects ramp disturbances; but, 
it enables also the extraction of slow varying disturbances 
and even suppression of the effects of low frequency 
stochastic disturbances. 

III. IMPACT STRUCTURE 
In the IMPACT structure shown in Fig.1, the controlling 

process is given by its pulse transfer function or by 
polynomials )( 1−zPu  and )( 1−zQ , and the process dead-
time given by integer k. Within the control portion of the 
structure in Fig.1 (shaded part) two internal models are 
included: the two-input nominal plant model 

Fig.1.  IMPACT controlling structure 
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explicitly and the disturbance model embedded into the 
discrete filter )(/)( 11 −− zCzA . Both the internal nominal 
plant model and disturbance model is treated as the 
disturbance estimator. The control portion has two control 
loops that can be designed independently. The minor local 
control loop is designed by the proper choice of 
polynomials )( 1−zA  and )( 1−zC , while polynomials 

)( 1−zPr  and )( 1−zPy  in the main control loop are 
determined to achieve the desired system set point 
response. For a minimal phase plant, the proper choice of 
polynomial )( 1−zPy  is )()( 11 −− = zPzR o

u  [1]. 
Under the nominal conditions 

))()(   ),()(( 101101 −−−− ≡≡ zQzQzPzP uu  and for 

)()( 11 −− = zPzR o
u , the closed-loop transfer functions 

)(/)( 11 −− zrzy  and )(/)( 11 −− zwzy  are easily derived from 
Fig.1 as  
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In virtue of (7), the system set-point response can be 
adjusted by determining appropriate polynomials )( 1−zPr  
and )( 1−zPy  according to the desired system closed loop 

transfer function ).()(/)( 111 −−− = zGzrzy de  Then, the 
absorption of an external disturbance and the speed of 
disturbance transient response are adjusted by choosing the 
structure and parameters of the disturbance estimator.    

III.1. ELIMINATION DISTURBANCE 
         From (6), the steady-state error in the presence of a 
known class of external disturbance )(tw will become zero 
if  

[ ]
[ ]

1

0)(
)()()(
)()()()1lim( 1
11101

11110
1

→

=
+
−− −

−−−−−

−−−−−
−

z

zw
zPzzQzC
zAzzCzQz

y
k

k

        (8) 

In the case of stable polynomial )( 1−zC  and the plant 
of nonminimal phase, 
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and then the relation (8) is reduced to 
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As shown later, the stable polynomial )( 1−zC  is to be 
chosen according to the desired speed of disturbance 
rejection and the required degree of system robustness and 
then polynomial )( 1−zA  is determined to satisfy relation 
(10). 

According to the principle of absorption, it is possible 
to design the observer estimator that rejects any kind of 
expected disturbances. To this end, consider the class of 
disturbances having the z-transform 

).(/)()( 111 −−− = zDzNzw ww  Then, relation (10) is satisfied 
if the following Diophantine equation holds 

           )()()()( 111
1

11 −−−−−− =Φ+ zCzzBzAz k          (11)                                                  
where )( 1−Φ z  represents the absorption polynomial 
determined by )()( 11 −− ≡Φ zDz w . For example, to the 

polynomial and sinusoidal disturbances ( ∑ =
−= m

i
i

i tdtw 1
1)(  

and ttw ωsin)( = ) correspond respectively 
111 )1()( +−− −=Φ mzz  and 211 cos21)( −−− +−=Φ zTzz sω , 

where sT  is the sampling period. 

A unique solution of the Diophantine equation, which 
plays a crucial role in the design procedure of the observer 
estimator, proposed in this paper, does not exist [8]. 
Relation (11) is a linear equation in polynomials )( 1−zA  
and )( 1

1
−zB . Generally, the existence of the solution of 

Diophantine’s equation is given in [9]. According to [9], 
there always exists the solution of (11) for )( 1−zA  and 



)( 1
1

−zB  if the greatest common factor of polynomials kz −−1  
and )( 1−Φ z  divides polynomial )( 1−zC ; then, the equation 
has many solutions. The particular solution of (11) is 
constrained by the fact that the control law must be causal, 
i.e., )(deg)(deg 11 −− ≤ zCzA . Hence, after choosing a 
stable polynomial )( 1−zC  and degrees of polynomials 

)( 1−zA  and )( 1
1

−zB , and inserting the absorption 
polynomial )( 1−Φ z  that corresponds to an expected 
external disturbance, polynomials )( 1−zA  and )( 1

1
−zB  are 

calculated by equating coefficients of equal order from the 
left- and right-hand sides of equation (11). Polynomial 

)( 1−zA  obtained by solving (11) guarantees the absorption 
of the expected class of disturbances, while the choice of 

)( 1−zC  affects the speed of disturbance rejection, system 
robustness, and sensitivity with respect to measuring noise. 
Good filtering properties and the system efficiency in 
disturbance rejection are the mutually conflicting 
requirements. Therefore, to reduce the noise 
contamination, the low-pass digital filter may be 
introduced to modify the internal model of the disturbance 
into 
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where )(/)( 11 −− zCzAf  represents the pulse transfer 

function of the low-pass filter and )( 1
1

−zA  is a polynomial 
that satisfies  (11) and thus includes implicitly the internal 
model of disturbance. The lower bandwidth of the low-pass 
filter corresponds to a higher degree of system robustness 
and vice versa [10]. According to [10], complex 
disturbances require higher order of polynomial )( 1−zA  
and it will further reduce system robustness with respect to 
mismatches of plant parameters. 

III.2. PARAMETAR SETTING 
The main control loop of the system of Fig. 1 is 

designed to achieve the desired set-point response 
determined by the system closed-loop transfer function 
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According to (7), the desired closed-loop transfer 
function is achieved if the following identity holds 
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To satisfy (14), it is first necessary to solve the 
Diophantine equation  

)()()()( 11111 −−−−−− =+ zKzTzPzzQ dey
ko               (15)   

for polynomials )( 1−zPy  and )( 1−zT  and then to 
determine the second polynomial of the main control loop 
of the system of Fig. 1 as 

)()()( 111 −−− = zHzTzP der .                         (16)                                                                   
where )( 1−zT  in (15) is chosen as a stable polynomial. 
Recall that, for a minimal phase plant, )()( 11 −− = zPzR o

u . 
The characteristic polynomial )( 1−zKde  is read from 

(13) or it may be determined by the desired closed-loop 
system pole spectrum. To improve the system robustness 
with respect to uncertainties of plant parameters, 
polynomial )( 1−zK de  may be extended by factors 
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At the beginning, the values of ib  and integer n are to 
be chosen as small as possible and then they can be 
increased gradually until the required criterion of robust 
stability is satisfied. At the same time, polynomial  )( 1−zPr  
should be modified into 
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to save the achieved set-point response and to keep 
unchanged the steady-state value of the system output. 

IV. MODIFIED IMPACT STRUCTURE 
 Fig. 2 shows the modified IMPACT structure for the 
control plants without transport lags, which may be applied 
for structural design of digitally controlled electrical drives  
[1,2]. Signal wM  modeled the influence of load torque on 
system output y  (angular speed or position of the motor 
shaft). 

 
 

Fig.  2. Modified IMPACT controlling structure 

The control plant of the structure in Fig. 2 is given by 
its nominal pulse transfer function  
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which is used as a two-input internal plant model within the 
control portion of the structure. Signal ε  estimates the 
influence of generalized disturbance on the system output.   
Uncertainties of plant modeling may be adequately 
described by the multiplicative bound of uncertainties 

)(ωα [11] 

W z W z W zo( ) ( )( ( ))− − −= +1 1 11 δ                     (20a) 
δ α ω ω πωW e Tj T( ) ( ), ,− ≤ ∈ [ ]0  .                 (20b) 



 Then, the system of Fig. 2 satisfies the condition of 
robust stability if the nominal plant is stable and if the 
following inequality holds  
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 The robust system performance is achieved by the 
operation of the local loop of the structure in Fig. 2. 
Namely, the role of local loop is to suppress as much is 
possible the effects of generalized disturbance on the 
system output. According to the principle of absorption, it 
is necessary to include, into the control part of the structure, 
the internal model of disturbance having the input ε . In the 
case of control plant without the transport lag, the internal 
model of disturbance is reduced to the prediction 
polynomial )( 1−zD . In Tsypkin’s works, most frequently 
the prediction polynomial 

 11 2)( −− −= zzD                                    (22) 
is proposed [3, 4]. This polynomial corresponds to linear 
disturbances but it effectively rejects different classes of 
slowly varying disturbances, too, especially in the case of 
small sampling period [1, 5]. According to the standard 
procedure of IMPACT structure design [5], in the case of 
minimum phase plants, 

)()( 11 −− = zPzR o
u                                   (23) 

is to be adopted. The main control loop of the structure in 
Fig. 2 is designed to achieve the desired pulse transfer 
function )( 1=zGde  of the closed-loop system. Namely, by 
equating identically the desired )( 1=zGde  with  
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one can easily determine the polynomials )( 1−zPy  and 

)( 1−zPr  and thus the structure design is completed. 
 In the structure of Fig. 2 the encoder detecting the 
angular speed or position is not indicated. When the 
rezolver to digital converter (R/D) of limited resolution is 
applied, the measuring signal is contaminated by 
quantization noise [2], which produces the fluctuation of 
control variable and losses in the motor. The predictive 
filter in the local loop increases the noise and that makes 
the system more sensitive to quantization of the speed and 
position. Therefore, the structure of Fig. 2 is modified by 
including the extended observer, as is shown in Fig. 3. The 
observer is extended by the model of disturbance to enable 
the estimation of angular speed in the case of the presence 
of a constant or slowlyy varying disturbance. 
 In this paper, for the extraction of disturbance, the 
simple polynomial predictor is applied in the local minor 
loop of the structure of Fig. 3, instead of internal model of 
disturbance used in the ordinary IMPACT structure of Fig. 
2. Generally, the predictive filter is defined as an algorithm 
that estimates future values of the input signal and 
suppresses the noise contamination [12]. The relatively 

simple forms of digital predictive filters corresponding to 
polynomial disturbances are treated.  

 
Fig.  3. Modified IMPACT structure of digitally controlled 

speed servomechanism 
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where coefficients ai  are unknown real constants. For 
example, the pulse transfer function of Newton’s predictor, 
which estimates signal (25) with prediction horizon of p 
samples (i.e. !( )ε k p+ ) has the form 

 H z zM
p p i

i

M

( ) ( )− −

=
= −∑1

0
1 .                            (26) 

 This filter estimates sample !( )ε k p+  by M+1 
preceding samples ε ( )k . In the particular case of M = 1 
and p = 1,  filter (26) becomes identical to prediction 
polynomial (22). Generally, when an electrical drive is 
under consideration (control plant has minimal transport 
lag) it is always p = 1. Filtering properties of the different 
Newton’s filters are illustrated in Fig. 4. Frequency 
characteristics of Fig. 4 show that noise components in the 
signal are increased when the order of the filter becomes 
greater. Therefore a linear approximation of signal (M = 1) 
may be adopted as an adequate, from the standpoint of 
noise sensitivity. 
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For further simplification, the low-pass digital filter 
S z( )−1  may be adopted as a digital equivalent of the 

simplest low-pass analogue filter  
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having only one tuning parameter Tf of a clear physical 
meaning. By increasing the value of Tf  the better filtering 
properties and higher system robustness are achieved, 
especially within the low frequency band. On the other 
hand, with greater Tf  the speed of disturbance absorption is 
reduced and vice versa.  
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Fig.  5. Frequency characteristics of LSN predictor and 
prediction polynomial 

For comparison, the frequency characteristics of the first 
order prediction polynomial and LSN predictor are 
illustrated in Fig. 5. 

V. ILLUSTRATIVE EXAMPLE 
 The efficiency of LSN predictor with Tf  = 0.2s, when 
compared with the application of prediction polynomial 
D z z( )− −= −1 12 , in the case of IMPACT structure of 

positioning servomechanism is illustrated by Figs. 6 and 7. 
In the servomechanism, the 16-bits D/A converter and 12-
bits R/D converter are applied. The results of simulation 
runs given in Fig. 6 (a) and (b) and Fig. 7 (a) and (b) are 
obtained by LSN predictor while the results in Fig. 6 (c) 
and (d) and Fig. 7 (c) and (d) are accomplished by the 
prediction polynomial. Notice that LSN filter suppresses the 
effects of quantization noise on the control variable and 
slightly slows down the speed of disturbance rejection. 
Sampling period T = 0.1s is assumed. The control plant is 
DC motor U12M4T having the electromagnetic gain factor 
K = 4.38 and mechanical time constant Tm  =  0.32s. The 
desired close-loop system transfer function is specified by 
two conjugate complex poles with undamped natural 
frequency ωn = 2.5 rad/s and relative damping coefficient ζ 
= 1. 
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Fig.  6. Operation of IMPACT structure in the absence of 

torque disturbance 
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Fig.  7. Operation of IMPACT structure in the presence of 
torque disturbance 

 
The efficiency of LSN predictor application as a   

prediction within the IMPACT structure of the speed-
controlled electrical drive is illustrated in Figs. 8 and 9. The 
same DC motor U12M4T and T = 0.1s, as in the case of the 
positioning servomechanism, is applied. According to the 
proposed procedure, the desired closed-loop system transfer 
function  
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is specified and then the following polynomials of the 
control structure are calculated 

z P z zu
o− − −=1 1 111765( ) . , Q z zo ( ) .− −= −1 11 073146 ,  

R z( )− =1 11765. , P z zy ( )− −= − +1 10955642 0740818. .  (30) 

                 and P z zr ( )− −= −1 10312898 0259182. . . 

 The system simulation is performed when 16-bits D/A 
and 12-bits R/D converters are applied (Fig. 8). The 



standard deviation of the difference between output signals 
generated with and without quantization noise, in the case 
of IMPACT structure with LSN predictor (Fig. 8), is 12% 
less than in the case of the observer based structure. By 
increasing time constant Tf , quantization noise is more 
suppressed but, at the same time, the speed of disturbance 
rejection is slowed down.  Hence, the implementation of 
LSN predictor instead of prediction polynomial gave 
approximately the same results as in the case of observer 
implementation in IMPACT structure, but the structure with 
LSN predictor is significantly simpler.  Furthermore, by 
tuning parameter Tf  it is possible, in a simple way, to adjust 
system dynamic properties, suppression of quantization 
noise, and to improve robust stability of the system (Fig. 9). 
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 Fig.  8. Responses of IMPACT structure of speed-
controlled  servomechanism with LSN predictor (Tf   = 0.2s) 
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Fig.  9. Frequency characteristics of complementary sensitivity 
function of IMPACT structure with (1) prediction polynomial 

 and  (2) with LSN predictor having: (2) Tf  = 0.05, 
 (3) Tf   = 0.1, (4) Tf   = 0.2, and (5) Tf   = 0.33. 

VI. CONCLUSION 
 The design procedure of IMPACT structure for 
digitally-controlled speed and position servomechanisms 
has been given. It was shown that the set-point response of 
the structure and speed of disturbance rejection could be 
adjusted independently. Instead of the design of disturbance 
estimator within the local loop of the structure, as in the 
case of basic IMPACT structure, different predictors are 
employed, for the purpose of disturbance extraction. This 
alternative approach has several advantages: the relatively 
easy setting of controller parameters, adjustable speed of 
disturbance rejection, and control of system robust stability.  
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